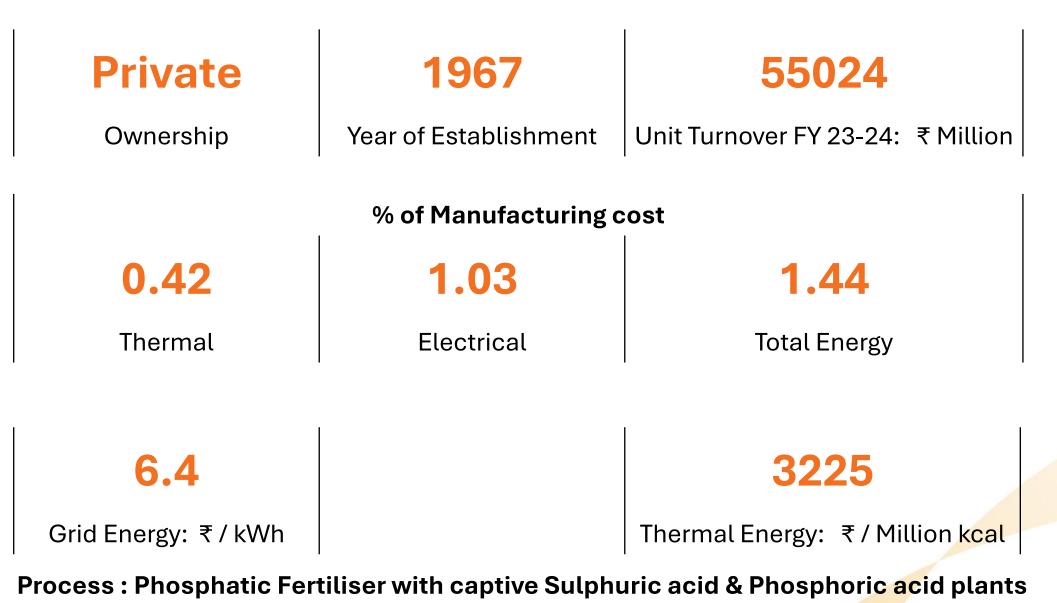


Coromandel International Ltd Visakhapatnam Plant

Mayankar Singh – GM – Power Electrical Instrumentation R Krishna Kumar – DGM – Maintenance R N V Chandrasekhar – AGM - Operations


Coromandel Reimagined

Company Profile

Technology – Process Specifications

1400 MTPD Sulfuric Acid Plant I 400 MTPD Sulphuric Acid Plant II 1650 MTPD Sulphuric Acid Plant III

DCDA Process - Monsanto Enviro Chem USA

800 MTPD Phosphoric Acid Plant I Dihydrate - Dorr Oliver USA

800 MTPD Phosphoric Acid Plant II

Dihydrate – Wet Process Prayon Technologies Belgium

2100 MTPD Complex Plant Train A & B

TVA Pre Neutralisation Wellman Lord USA

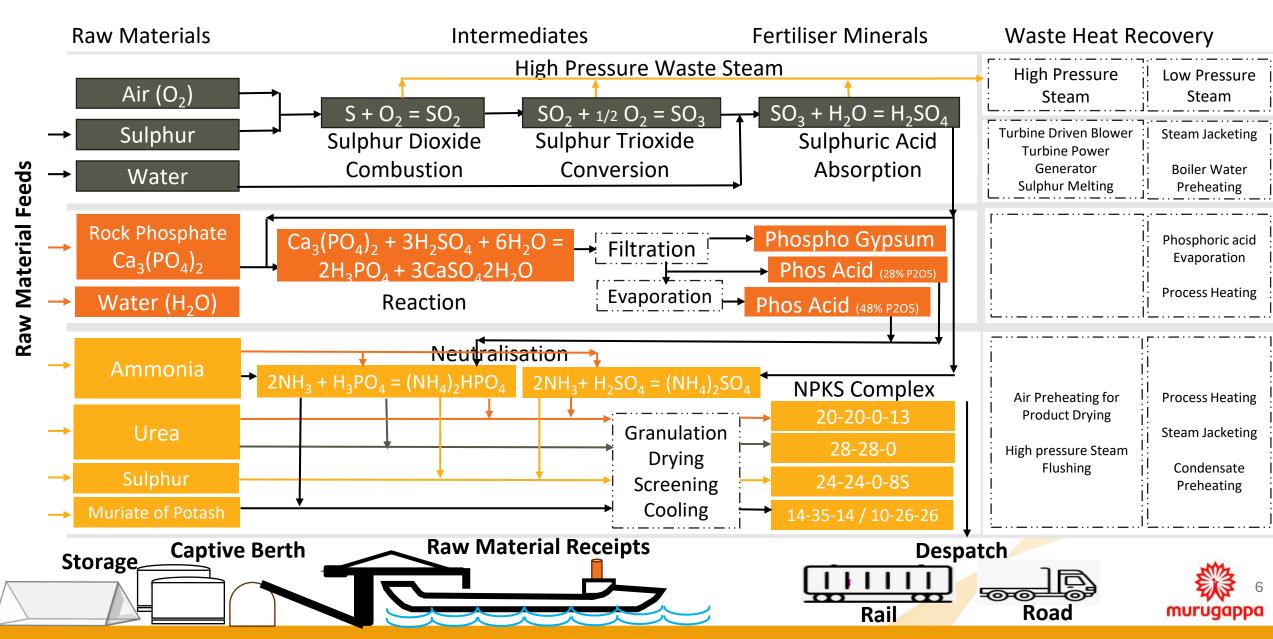
2000 MTPD Complex Plant Train C

Pipe Reactor Technology Incro Spain

Technology – Waste Heat Recovery

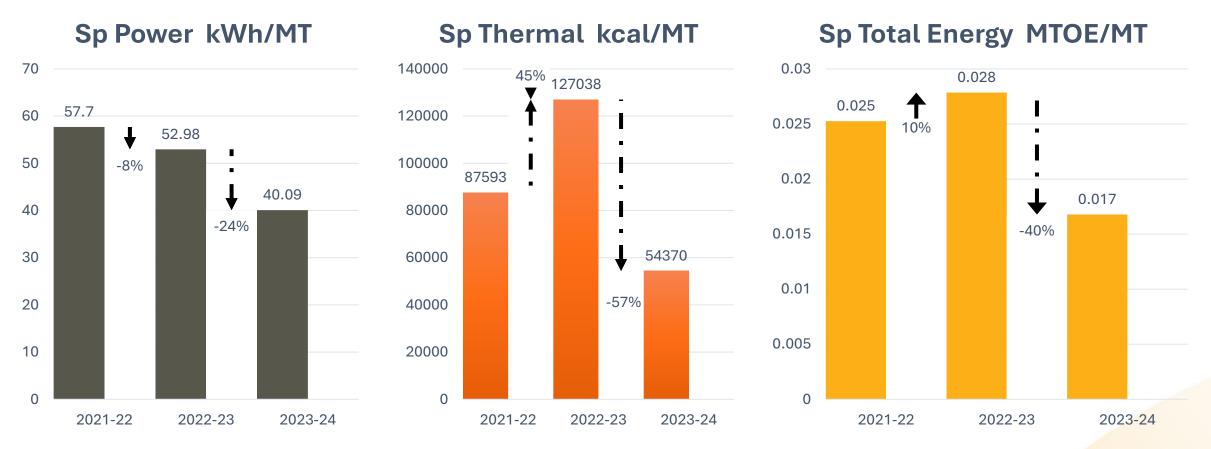
Turbo Generator - I 5 MW Condensing Turbine Turbo Generator - II

6.5 MW Non-Condensing Turbine **Turbo Generator III** 15.25 MW Condensing Turbine


Bottoming Cycle Co-Generation – Waste Heat for Process Heating, balance for Power Generation

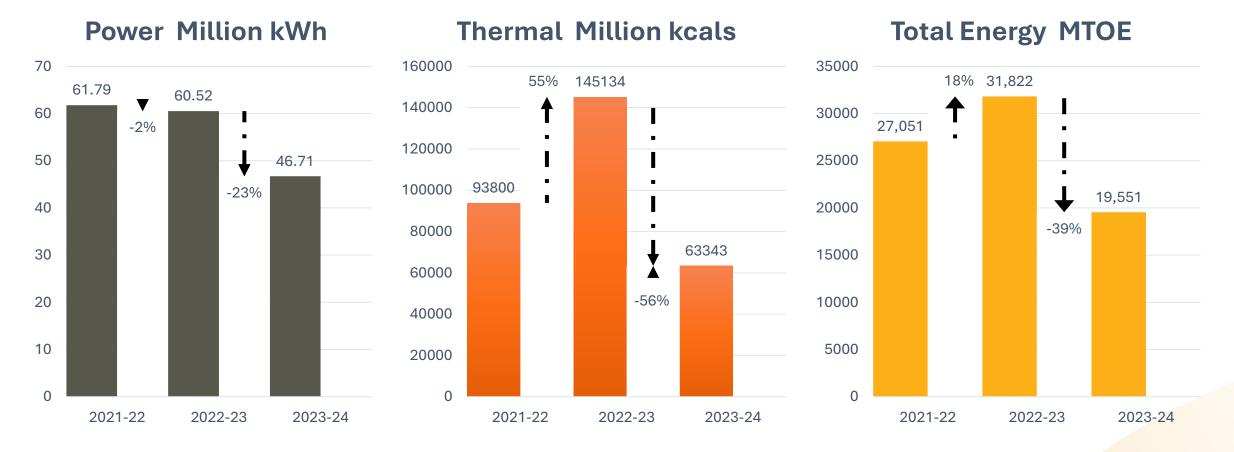
Process Flow Diagram

Coromandel Repositive Production & Purchased Energy Consumption


	Parameters	Units	2021-22	2022-23	2023-24
	Complex Fertiliser	MT	1070858	1142442	1165048
Production	Phosphoric Acid	MT	338697	359291	370617
	Sulphuric Acid	MT	532779	515485	861859
	Electrical incl Sister Concerns	million kWh	79.57	79.81	67.20
Energy Consumption	Electrical only Visak Plant	million kWh	61.79	60.52	46.71
Energy Consumption	Thermal	million kcal	93800	145134	63343
	Total	MTOE	27051	31822	19551
Specific Energy per Ten of	Electrical	kWh / MT	57.7	52.98	40.09
Specific Energy per Ton of	Thermal	Kcal / MT	87593	127038	54370
production	Total	MTOE / MT	0.0252	0.0278	0.0168

Specific Energy Consumption Trend

Reason for decrease in Specific Energy :


2022-23 : Higher Thermal Energy Consumption for Concentration of Captive Raw material Phosphoric Acid 2023-24: Higher waste heat recovery & utilisation

Energy Consumption

Reason for decrease in Specific Energy :

2022-23 : Higher Thermal Energy Consumption for Concentration of Captive Raw material Phosphoric Acid 2023-24: Higher waste heat recovery & utilisation

Benchmarking

	Electrical	Thermal	Total
Unit of measurement	kWh/MT	Kcal / MT	MTOE/MT
Coromandel Specific Energy	40.09	54370	0.017
Global Benchmark	149	870740	0.1161
Location of Unit	Europe	Europe	Europe
Difference with Global Benchmark	109	816370	0.099
Internal Target Specific Energy	40	54370	0.017

Comments

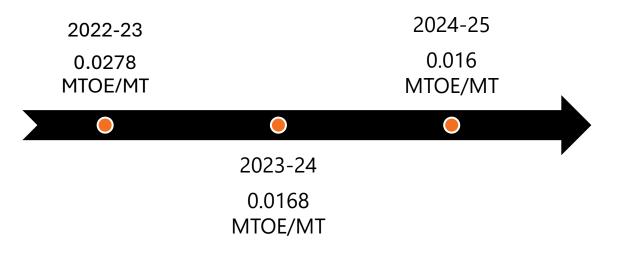
Derived benchmark being sum total energy of Sulphuric acid, Phosphoric acid & NPK complex plant

Reasons for Lower Specific Energy

Maximisation of Waste Heat Recovery from Sulphuric Acid plant

Source of Information

- Page 58 Table A2, Best Available Techniques for Production of Sulphuric Acid, Booklet No 3 of 8, Year 2000
 - EU IPPC Reference Document on Best Available Techniques in Large Volume Inorganic Chemicals – Ammonia, Acids and Fertilizers Industries. December 2006
 - Roger Heath, John Mulckhuyse and Subrahmanyan Venkataraman, Page 16, The Potential for Energy Efficiency in the Fertilizer Industry. World Bank Technical paper No 35, 1985



Benchmarking

Action Plans to Achieve Benchmark

- Annual Specific energy consumption targets
- Annual Energy efficiency improvement projects with specific targets and allocated budget
- Maximise Rail transport. Maximise 35 MT trucks replacing 10 – 20 MT trucks for product despatch
- Institutionalization of energy efficiency & conservation awareness programs.
- Institutionalization of internal incentive system to promote & reward energy efficiency behaviors
- Support technical training

Activities:

- ✓ Installation of capacitor banks at motor control centers
- ✓ SCADA & IIOT for real time monitoring
- $\checkmark\,$ Installation of LED lights for general illumination
- ✓ Installation of Variable Frequency drives
- Installation of Roof top solar plant
- $\checkmark\,$ Modernisation of age-old electrical drives & switchgear
- Maximise day light savings using translucent roof sheets and optimization of auto light sensors
- $\checkmark~$ Optimisation of process plant loads
- ✓ Maximise Planned shutdown
- ✓ Maximise utilisation of waste heat
- ✓ Avoid Diesel Power & Coal Fired Boiler Generation,
- Maximize internal storage & avoid multiple material handling
- Deploy best available technologies in manufacturing

Major Encon Planned 2024-25

	Electrical	Energy	Investment	Payback	Comment
	Million kWh	ΜΤΟΕ	₹ Million	months	
Replacement of age-old rewound motors by IE3 motors	0.353	101	9.5	59	10 no's age-old rewound motors
Condensate management system for evaporators	0.102	29	2.5	54	Installation of Condensate Monitoring & Recovery system for Evaporator I system
Replacement of 45 nos age old window AC units with 3-star rating units	0.06	17	2	73	Replacement of 45 no's age-old window AC units

Encon 2021-24

Year	No of Encon Projects	Investment	Electrical Savings	Thermal Savings	Savings	Payback
		₹ Million	Million kWh	Million kcals	₹ Million	Months
2021-22	4	10	0.426	439	7	17
2022-23	12	193	0.940	1117	19	124
2023-24	5	4336	74.7	0	478	109

Major Encon 2021-22

SI No	Name of Encon Projects	Investment	Electrical Savings	Thermal Savings	Savings	Payback
		₹ Million	Million kWh	Million kcals	₹ Million	Months
1	Deployment of 35 MT Capacity Trucks for Product Despatches	0.0	0.00	439	4.4	0
2	Replacement of age-old capacitor banks	1.4	0.13		0.7	24
3	Replacement of age-old motors by IE3 motors	6.8	0.25	0	1.4	60
4	Replacement of 41 no's age-old window AC units with 3-star rating units	1.5	0.05	0	0.3	67

Major Encon 2022-23

SI No	Name of Encon Projects	Investment	Electrical Savings	Thermal Savings	Savings	Payback
		₹ Million	Million kWh	Million kcals	₹ Million	Months
1	Green Building	2.0	0.044		0.28	86
2	Solar Street Lighting	0.7	0.003		0.02	389
3	LED Lighting	0.5	0.102		0.65	9
4	Replacement of 52 nos age old window AC units with 3-star rating units	1.5	0.073		0.4	46
5	Battery Operated Transport Vehicles	0.9		0.05	0.05	249
6	Bicycles for all employees for Commuting To & From workplace	6.0		3.0	3.0	24

Major Encon 2022-23

SI No	Name of Encon Projects	Investment	Electrical Savings	Thermal Savings	Savings	Payback
		₹ Million	Million kWh	Million kcals	₹ Million	Months
7	Higher Pipe Size Instrument Air Piping	8.1	0.125		0.8	121
8	Evaporator - II Steam Condensate recovery at Utilities Plant	3.3	0.119		0.8	52
9	Laid Port & Market Connectivity Internal Roads through shortest Route	137.2	0.000	796	8.1	202
10	HP Steam Line interconnectiing AFBC Boiler and Sulfuric acid plant steam systems	22.0	0.316		2.0	131
• •	3 Star Packaged Air Handling Units replacing split air conditioners	1.2	0.039		0.3	57
12	Turbo Generator - I Island mode operation	9.2	0.119		2.3	48

Major Encon 2023-24

SI No	Name of Encon Projects	Investment	Electrical Savings	Thermal Savings	Savings	Payback
		₹ Million	Million kWh	Million kcals	₹ Million	Months
	Installation of Waste Heat Boiler and Captive Steam Turbo Generator in SAP-III	4300.0	72.77		466	111
2	Installation of 11KV Automatic Power Factor controlling system	29.5	1.70		11	32
3	Replacement of age-old rewound motors by IE3 motors	4.4	0.17		1.1	49
Δ	Replacement of 41 nos age old window AC units with 3-star rating units	2.384	0.05		0.31	92
5	Kaizen - Installation of AC controls, close to respective AC Units	0	0.02		0.14	0

Innovative Project 2023-24

1650 MTPD Sulphuric Acid Plant - III

Turbo Generator - III

Project Installation of Waste Heat Boiler and Captive Steam Turbo Generator in SAP-III

Description 1650 MTPD Sulphuric Acid Plant III installed, generating 87 MT / Hr., high pressure waste steam at 69kgf/cm²g 485 °C.

High pressure & temperature steam turbine results in lower Specific Steam Consumption of 4.0 MT / MW. Old Condensing turbine was medium pressure 31kgf/cm²g 315 °C with 5.8 MT/MW specific Steam Consumption.

Why Innovative Known Concept with Unique Application

Impact 40% reduction in specific energy consumption from 0.028 MTOE/MT in 2022-23 to 0.017 MTOE / MT in 2023-24

Replication High as high-pressure steam and temperature enables lower Specific steam consumption

Investment ₹ 4300 Million

Savings ₹ 466 Million

Innovative Project 2023-24

murugappa

Project Installation of 11KV Automatic Power Factor controlling system

Description Installation of Automatic Power Factor controlling panels comprising

1.11 KV Limiting Reactors 2.12 MVAR – 3 no's
2.100 KVAR,440V,3Ph,50Hz, CLMD 83 Capacitor – 30 no's
3.11kV, 2500kVAr APFC with 6% inrush current – 1 no.
4.11kV, 2000kVAr APFC with 6% inrush current – 1 no.

- Why Innovative In House Driven / Beyond OEM
- 4
- Impact 2% reduction in Specific Energy Consumption as Grid Power factor increased from 0.97 to 0.995

6

Replication High as higher power factor avoids penalty and power losses

Savings ₹ 11 Million

Central & Field

Capacitor Banks

On Site

Year	Source (Solar, Wind etc)	Installed Capacity	Capacity Addition	Total Generation	Share % w.r.t to overall energy consumption
		MW	MW	Million kWh	
2021-22					
2022-23	Ground Mounted Solar	0.00078		0.003416	0.005
2023-24					

14 no's Solar Street Lights installed on Pilot Scale

Utilisation of Renewable Energy Sources

Off Site

		Installed	Capacity	Total	Share % w.r.t to overall
Year	Source (Solar, Wind etc)	Capacity	Addition	Generation	energy consumption
		MW	MW	Million kWh	
2021-22					
2022-23					
2023-24					

Renewable Purchase Obligations

Year	Source (Solar, Wind etc)		Consumption	Share % w.r.t to overall energy consumption
			kWh	
2021-22				
2022-23	Solar	Power Purchase Agreement	6405489	9.2
2023-24				

Waste Utilisation

		2021-22	2022-23	2023-24
Generation, MT				
Waste Steam from Sulphuric acid Plant	MT	608961	602596	1023612
GCV	Kcal/kg	634	634	681
Heat Value	Mkcal	386081	382046	695579
Disposal, MT				
Utilised for Process Heating	MT	428262	414221	587459
Balance for Power Generation	MT	180699	188375	436152
Power Generated from Waste Heat	kWh	30452047	31088600	96562100
Specific Power per MT	kWh/MT	73.11	71.89	45.49
% Share of Waste heat in overall Electrical energy consumption	%	28.0%	27.5%	64.6%

GHG Inventorisation

Kg CO₂ / MT Product

Parameters	FY 2021-2022	FY 2022-2023	FY 2023-2024
Scope 1 Emission (direct emission from fuels used)	23	37	14
Scope 2 Emission (indirect emission from grid electricity)	50	42	41
Scope 3 Emission (employee commuting)	4	4	4
Total Emission	77	83	59

Emission Intensity Target	Kg CO2 / MT Product
Short Term	55
Long Term (Year 2035)	0

Disclosure of Emission data Publicly thru Integrated Annual Report

Action Plan

3

4

5

6

- Maximise Sulphuric Acid Production & Power Generation from Waste Heat
- Maximise Purchase of Renewable Energy
- Avoid operation of Emergency Diesel Generating Sets
- Switch over to energy efficient lighting
- Replacement of age old by modern 3 Star Air conditioning Units
- Replacement of age old rewound by modern IE3 motors
- Improve insulation & condensate recovery

Green Supply Chain

Green Purchase Policy

Coromandel International Limited Post Box No. 1116, Srhänfauram, Malkapuram Post Visakhapatnam 250 011, Andhra Predesh, India Tel ; 91-891-2578400 DD : 91-891-26934Edm No Webiake : www.coromandel.biz CIN : 124120AP1561PLC00092 GSTIN : 37AACC755X12C

14.08.2024

PROJECT NAME: Coromandel TG Building LOCATION: Visakhapatnam

TO WHOM SO EVER IT MAY CONCERN

To reduce the environmental impacts of the goods, services and works procured. Green procurement also considers the immediate and future impacts of purchases through their consumption and eventual end-of-life stage. Green procurement policies embody the triple bottom line (TBL), a business framework for improving performance in all three areas – environmental, social, and financial.

The team will strive to procure materials that are:

- Durable, as opposed to single use or disposable.
- Non-toxic or minimally toxic, preferably biodegradable.
 Highly energy efficient.
- Highly energy efficient.
 Recyclable or safely disposable.
- Eco-friendly housekeeping chemicals that meet green seal/ green pro standards are used to reduce adverse health impacts of the occupants.
- Materials with low Volatile Organic Compounds shall be selected and given priority for use inside the premises. These shall include paints, carpets, furniture's, sealants, adhesives etc.,
- Made from raw materials obtained in an environmentally sound, sustainable manner.

Manufactured in an environmentally sound manner.

The cause of minimal or no environmental damage during normal use or maintenance.
 Shipped with minimal packaging (consistent with care of the product), preferably made of recycled and/or recyclable materials.

Tel : 91-40-27842034 / 27847212

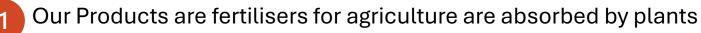
E-mail: mail@coromandel.murugappa.co

Fax: 91-40-27844117

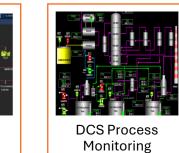
Registered Office : Coromandel House, 1-2-10 Sardar Patel Road, Secunderabad - 500 003 Telangana, India

Year	Initiatives taken in supply chain to reduce energy consumption
2021-22	Maximised Deployment of 35 MT axle load trucks for product Despatches
2022-23	Laid Port & Market Connectivity Internal Roads through shortest Route
2023-24	Maximised captive power generation by Waste heat recovery & minimised grid supply power

Info on investments in supply chain & benefits achieved presented under Annual Encon measures implemented


Energy Management System

Certifications


Life Cycle Assessment of our Products

- 2 Regularly Environment Impact Assessment conducted, our average emissions are less than 20% of permitted by AP Pollution Control Board & Environment has capacity to assimilate such quantities
- 3 Ene
 - Energy & CO₂ emission intensity of our product is very minimum
 - Hence our products are environmentally sustainable

Process & Energy Monitoring IOT Systems

Learnings from CII / BEE / NREDCAP Award Programs

- Competitive Spirit among participating companies
- 2
- Advice by Judges on implementing energy efficient technologies
- Knowledge on Energy efficient technologies under implementation among Industries
- 4 9

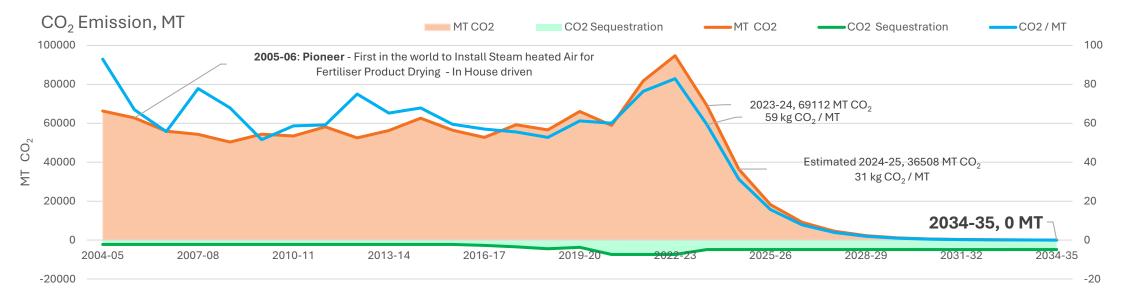
Sense of recognition for energy conservation efforts undertaken

Energy Management System

Monitoring – Daily Target Vs Actual Specific Energy compared & corrective actions undertaken

Review Meeting Chaired By - Unit Head

TYPICAL REPORT				Jul-24						Cumulative				Variance	Rs./MT
Conversion Cost - Variable		Norm		Rate		Rs/MT		Norm		Rate		Rs/MT		Budget v	s Actual
COMPLEX		Budget	Actual	Budget	Actual	Budget	Actual	Budget	Actual	Budget	Actual	Budget	Actual	MTD	YTD
Power	Kwh	155	159	2.68	1.88	416	299	157	173	2.55	2.02	400	350	117	51
Water	M3	3.99	3.81	63	70	250	268	3.97	4.44	63	64	249	282	-17	-33
Fuel (Lshs)	Kgs	0.45	0.44	54	60	24	26	0.47	0.49	54	58	25	28	-2	-3
Fuel - Others (Diesel & Kerosene)						9	8					29	34	1	-4
Coal& O&M Chemicals & Consumables	Kgs	2	0	17		41	19	3	0	17		43	21	22	22
Defoamer	Kgs	1.66	1.24	58	50	96	61	1.64	1.48	58	57	95	84	35	11
Granulation Aid	Kgs	0.07	0.00	33	0	2	0	0.05	0.00	33	0	2	0	2	2
Anti Caking Agent	Kgs	0.40	0.40	62	72	25	29	0.40	0.39	62	65	25	25	-4	0
Caustic Lye	Kgs	1.24	1.33	38	35	47	47	1.25	1.26	38	36	47	45	0	2
Catalyst	Kgs	0.00	0.00	0	0	0	0	0.00	0.00	0	0	0	0	0	0
Hydrated Lime	Kgs	1.21	0.24	9.8	9.4	12	2	1.19	0.20	9.8	8.4	12	2	10	10
Other Chemicals & Mos						84	19					84	22	65	62
Hyd Lime -for Nut-gypsum	Kgs	13.38	14.75	8.4	8.0	112	118	12.77	15.3	8.4	8.01	107	123	-5	-16
Total Conv cost with Nut-Gypsum	- Rs./MT					1119	896					1120	_1017_	223	103
							223						103		
Less: P205 STO cost - Rs./MT						229	137					212	143	91	69
Net Converstion cost - Rs./MT						890	758					907	874	132	33


Challenges in Undertaking Monitoring Projects – Dashboard configuring, IIOT installations, Commissioning Servers, Installing Software, Cabling, DCS Networking & configuring dashboards, rigorous IT security assessment, release to mass users through real time portal, very challenging.

Net Zero Commitment

Our Commitment - We intend to commit to Net Zero by the year 2035, 35 years ahead of Govt of India commitment to Net Zero by the year 2070

Road Map for Target - Actual 2023-24 - 59 kg CO₂ / MT Fertiliser, Short Term Target 2024-25 - 31 kg CO₂ / MT Fertiliser, Long Term Target 2035 - 0 kg CO₂ / MT Fertiliser

Voluntary Initiatives - Continuously improving our environmental performance by undertaking Self Driven initiatives

- ✓ Maximise Renewable Energy Consumption
- Maximise Process Waste Heat Consumption

Energy Management Awards

BEE NECA 2007

BEE NECA 2012

Ima traile

NREDCAP 2010

NREDCAP 2012

NREDCAP 2013

Excellent Unit Award

2002

Excellent Unit Award

NATIONAL ENERGY ANAGEMENT WARD 202

Excellent Unit Award

2020

Award	Awarded By	Year
SAFETY & ENVIRONMENT		
"One of the Top 10 Greenest Companies in India"	TERI & Business Today	2001
Safety, Health & Environment Performance Award	CII - SR	2003, 2004
Environment Protection Award	FAI	1996, 2009,2017
5 Star Rating	British Safety Council	1999, 2011, 2023
Sword of Honour	British Safety Council	2023
Safety Award	National Safety Council	1998
WATER & ENERGY CONSERVATION		
Excellence in Energy Conservation & Management	CII	2000,2001,2002,19-20
Energy Efficient Unit Award	CII	2013-14,2014-15,2015-16,16-17,17-18,18-19,21-22
Certificate of Merit	BEE	2002-03, 2003-04, 2005-06 & 2006-07, 2011-12
Excellence in Energy Conservation	NREDCAP – Govt of AP	2009-10,2011-12,2012-13
Excellence in Energy Conservation	AP Productivity council	2006-07
Excellence in Water Management	CII	2009-10, 2010-11, 2011-12
PRODUCTION		
Best overall performance of Fertiliser Plant	FAI	1994-95
Best Operating Phosphoric Acid Plant	FAI	1994-95,1995-96,1996-97,1997-98,2000-01,2001-02,2 <mark>003-04,2004-</mark> 05,2005-06,06-07,09-10, 11-12,13-14,14-15,15-1 <mark>6,16-17,17-18</mark>
INDUSTRIAL RELATIONS		
Best Management Award	Labour Dept – AP Govt	2005, 2013, 2015, 2016,2017

For further information please contact gnanasundaram@coromandel.murugappa.com Vice president - Manufacturing

THANK YOU

